


THE ELEMENTS IN WHICH THE DIFFERENTIATING ELELCTRON ENTER INTO (n-1)d ORBITAL ARE KNOWN AS d-BLOCK ELEMENTS.

• THESE ELEMENTS ARE ALSO CALLED AS TRANSISTION ELEMENTS.

• THESE ELEMENTS ARE CLASSIFIED INTO 3d,4d,5d,6d SERIES ELEMENTS DEPENDING UPON THE FILLING UP OF ORBITAL.

Periodic table

• 3d series elements starts with S_c (z=21) and ends with Z_n (z=30)

 4d series elements starts with Y(z=39) and ends with Cd(z=48)

• 5d series elements starts with La(z=57) and ends with Hg(z=80)

6d series elements starts with Ac (z=89) and it is an incomplete series

- 1. Metallic character
- 2 . Melting and boiling points
- 3 .Atomic and ionic radii
- 4. Atomic volume and densities reactivity
- 5 .Ionization potential
- 6 . Electronic configuration
- 7 . Variable oxidation states
- 8 .Complex formation

- 9.colour
- 10 .magnetic properties
- 11 .catalytic properties

<u>Electronic configuration</u>: in d-block elements the differentiating electron enters into (n-1)d orbital.

3d-series:

Element Name	Atomic Number	Electron Configuration					
Scandium (Sc)	21	Sc: [Ar] 4s ² 3d ¹	[Ar] 1 1 3d				
Titanium (Ti)	22	Ti: [Ar] 4s ² 3d ²	[Ar] 1 1 1				
Vanadium (V)	23	V: [Ar] 4s ² 3d ³	[Ar] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Chromium (Cr)	24	Cr: [Ar] 4s13d5	[Ar] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Manganese (Mn)	25	Mn: [Ar] 4s ² 3d ⁵	[Ar] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Iron (Fe)	26	Fe: [Ar] 4s ² 3d ⁶	[Ar] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Cobalt (Co)	27	Co: [Ar] 4s ² 3d ⁶	[Ar] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Nickel (Ni)	28	Ni: [Ar] 4s ² 3d ⁷	[Ar] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Copper (Cu)	29	Cu: [Ar] 4s13d10	[Ar] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Zinc (Zn)	30	Zn: [Ar] 4s ² 3d ¹⁰	[Ar] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

4d-series:

elements	Atomic Number	Symbol	Electronic configuration			
Ytterium	39	Y	[Kr] 4d ¹ 5s ²			
Zirconium	40	Zr	[Kr] 4d ² 5s ²			
Niobium	41	Nb	[Kr] 4d ⁴ 5s ¹			
Molybdenum	42	Mo	[Kr] 4d ⁵ 5s ¹			
Technetium	43	Tc	[Kr] 4d ⁵ 5s ²			
Ruthenium	44	Ru	[Kr] 4d ⁷ 5s ¹			
Rhodium	45	Rh	[Kr] 4d ⁸ 5s ¹			
Palladium	46	Pd	[Kr] 4d ¹⁰ 5s ⁰			
Silver	46	Ag	[Kr] 4d ¹⁰ 5s ¹			
Cadmium	48	Cd	[Kr] 4d ¹⁰ 5s ²			

5d-series:

•	Element	Symbol	At. No	o. Electronic configuration					
•	Lanthanum	La	57	[Xe] $5d^16s^2$					
•	Hafnium	Hf	72	$[Xe] 4f^{14}5d^26s^2$					
•	Tantalum	Та	73	$[Xe] 4f^{14}5d^36s^2$					
•	Tungsten	W	74	[Xe] $4f^{14}5d^46s^2$					
•	Rhenium	Re	75	[Xe] $4f^{14}5d^56s^2$					
•	Osmium	Os	76	[Xe] $4f^{14}5d^66s^2$					
•	Iridium	Ir	77	[Xe] $4f^{14}5d^{7}6s^{2}$					
•	Platinum	Pt^*	78	[Xe] $4f^{14}5d^{10}6s^0$					
•	Gold	Au*	79	[Xe] $4f^{14}5d^{10}6s^1$					
•	Mercury	Hg	80	[Xe] $4f^{14}5d^{10}6s^2$					
	[Xe] = 54								

• Oxidation states: d-block elements show various oxidation states.

• 3d-series:

Elements	Electronic configuration	Known oxidation states
Sc	[Ar] 3d ¹ 4s ²	+3
Ti	[Ar] 3d ² 4s ²	+1, +2, +3, +4
v	[Ar] 3d ³ 4s ²	+1, +2, +3, +4, +5
Cr	[Ar 3d ⁵ 4s ¹	+1, +2, +3, +4, +5, +6
Mn	[Ar] 3d ⁵ 4s ²	+1, +2, +3, +4, +5, +6, +7
Fe	[Ar] 3d ⁶ 4s ²	+1, +2, +3, +4, +5, +6
Co	[Ar] 3d ⁷ 4s ²	+1, +2, +3, +4, +5
Ni	[Ar] 3d ⁸ 4s ²	+1, +2, +3, +4
Cu	[Ar] 3d ¹⁰ 4s ¹	+1, +2, +3
Zn	[Ar] 3d ¹⁰ 4s ²	+2

Oxidation states of 4d-series:

Element	Υ	Zr	Nb	Мо	Tc	Rυ	Rh	Pd	Ag	Cd
oxidation states									1	1
			2	2		2		2	2	2
	3	3	3	3		3	3	3	3	
		4	4	4	4	4	4	4		
			5	5		5				
				6	6	6	6			
					7	7				
						8				

Oxidation states of 5d-series:

Element	La	Hf	Ta	W	Re	Os	lr	Pt	Αu	Hg
oxidation states					1				1	1
			2	2		2	2	2	2	2
	3	3	3	3	3	3	3	3	3	
		4	4	4	4	4	4	4		
			5	5	5	5				
				6	6	6	6	6		
					7					
						8				

Magnetic Properties: Based upon attraction, repulsion in a external magnetic field the substances are classified into

- 1) Dia magnetic substances
- 2) Para magnetic substances
- 3) Ferromagnetic substances

• If substance placed in external magnetic field if it repells from external magnetic field it is called as dia magnetic substance. ex: H+,He,Cu+

 If substance placed in external magnetic field if it weakly attracts towards external magnetic field it is called as para magnetic substance. ex: except Zn all 3d series elements

If substance placed in external magnetic field if it strongly attracts towards external magnetic field it is called as ferro magnetic substance ex: ,Fe,Co,Ni

Catalytic Properties: d-block elements exhibit different catalytic properties.

ex: Ni, Fe & Mo, V2O5, MnO2.

• <u>Complex formation</u>: elements of transistion sereies exhibit tendeny to form complex compounds. Ions of transistion metals having small size, large charge and suitable electronic configuration form complexes easily.

